
J Stat Phys (2008) 130: 1063–1085
DOI 10.1007/s10955-008-9486-2

Using the Renormalization Group to Classify Boolean
Functions

S.N. Coppersmith

Received: 24 December 2006 / Accepted: 10 January 2008 / Published online: 26 January 2008
© Springer Science+Business Media, LLC 2008

Abstract This paper argues that the renormalization group technique used to characterize
phase transitions in condensed matter systems can be used to classify Boolean functions.
A renormalization group transformation is presented that maps an arbitrary Boolean func-
tion of N Boolean variables to one of N − 1 variables. Applying this transformation to a
generic Boolean function (one whose output for each input is chosen randomly and inde-
pendently to be one or zero with equal probability) yields another generic Boolean function.
Moreover, applying the transformation to some other functions known to be non-generic,
such as Boolean functions that can be written as polynomials of degree ξ with ξ � N and
functions that depend on composite variables such as the arithmetic sum of the inputs, yields
non-generic results. One can thus define different phases of Boolean functions as classes of
functions with different types of behavior upon repeated application of the renormalization
transformation. Possible relationships between different phases of Boolean functions and
computational complexity classes studied in computer science are discussed.

Keywords Renormalization group · Computational complexity

1 Introduction

This paper argues that the set of Boolean functions of N Boolean variables can, as N → ∞,
be classified into phases using a method known in statistical physics as the renormalization
group (RG) [19, 24, 50, 51]. The RG technique, originally formulated to provide insight into
the nature of phase transitions in statistical mechanical systems [24, 50], involves taking
a problem with N variables and rewriting it as a problem involving fewer variables, and
then investigating the properties of the resulting sequence of functions as this procedure is
iterated. Here, we will define a procedure that transforms a Boolean function of N Boolean

S.N. Coppersmith (�)
Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison,
WI 53706, USA
e-mail: snc@physics.wisc.edu

1064 S.N. Coppersmith

variables into a Boolean function of N − 1 variables.1 The transformation used here is very
simple—the new function is one if the original function changes its output value when a
given input variable’s value is changed, and is zero if it does not.

It is shown that different classes of functions have different behavior upon repeated ap-
plication of a renormalization group transformation. In analogy with well-known results in
statistical mechanics [19], we interpret functions exhibiting different behaviors after many
renormalizations as being in different phases. Applying the renormalization transformation
to a generic Boolean function, whose output for each input is chosen randomly and indepen-
dently to be one or zero with equal probability, yields another generic Boolean function; this
“fixed point” behavior is evidence of the presence of a generic phase of Boolean functions.
Functions that can be written as low-order polynomials and functions of composite variables
such as the arithmetic sum of the values of the inputs are demonstrated to yield non-generic
behavior upon renormalization. Therefore, the RG distinguishes some individual functions
(that happen to be functions that can be specified much more efficiently than by making a
table of output values) as non-generic.2

Being able to classify Boolean functions is of great interest in the field of computational
complexity, the study of how the computational resources needed to solve different prob-
lems scale with the size of the problem specification. A problem as defined in computational
complexity theory corresponds to a family of Boolean functions, one function for each size
of the input specification [46]; the statement of how difficulty scales with problem size is
a statement about the computational resources needed to compute these functions as the
number of function arguments tends to infinity. Therefore, determining the computational
resources needed to solve a problem is equivalent to determining the dependence on N of the
computational resources needed to evaluate a set of Boolean functions of N Boolean vari-
ables, f (x1, . . . , xN), for any of the 2N possible input configurations.3 Classifying Boolean
functions by the computational resources required to compute them is an extremely powerful
concept [35], but it is difficult to implement. Whether or not the two well-known complexity
classes P (problems that can be solved with resources that scale polynomially with the size
of the problem specification) is equal to NP (problems for which a solution can be verified
with resources that scale polynomially with the size of the problem specification) [12, 31] is
a great outstanding question in computational complexity theory and in mathematics gener-
ally [1, 11, 23, 42, 49], and indeed, it has not been proven whether P is distinguishable from
PSPACE, the class of problems that can be solved using polynomially bounded memory (but
possibly exponential time) [35]. These difficulties in distinguishing computational complex-
ity classes motivate the consideration of other methods of classifying Boolean functions.

As in statistical mechanics, the distinctions between phases introduced here for functions
of N variables are completely sharp only in the thermodynamic limit N → ∞.4 However,

1It is more usual for renormalization group transformations to reduce the number of variables by a factor of
two instead of by one. Examples of renormalization groups for condensed matter systems that eliminate one
variable at a time are described in [9, 33, 48].
2Of course, we expect many other types of non-generic functions to exist.
3Computational complexity classes are often defined by referring to the computational resources needed
to answer the decision problem of whether or not a given input string is in a given language [23], but the
terminology in terms of functions used here is also accepted [7, 46].
4Distinctions between phases are sharp only in the limit N → ∞ because they are based on being able to
distinguish quantities that are exponentially large in N from those that are polynomially large in N . For fixed
N any large number can be written as a very large coefficient times a polynomially bounded quantity, so for
a fixed but large N , one examines whether or not the exponent and the coefficients are both less than some
fixed bounds.

Using the Renormalization Group to Classify Boolean Functions 1065

in our numerical examples we will apply the RG transformation to large but finite systems,
similarly to the calculations in the classic paper of Wilson [51].

Any Boolean function f (x1, . . . , xN) of the N Boolean variables x1, . . . , xN can be writ-
ten as a polynomial in the xj using modulo-two addition. This follows because the variables
and function all can be only 0 or 1, so f (x1, . . . , xN) can be written as

f (x1, . . . , xN) = A00...00(1 ⊕ x1)(1 ⊕ x2) · · · (1 ⊕ xN−1)(1 ⊕ xN)

⊕ A00...01(1 ⊕ x1)(1 ⊕ x2) · · · (1 ⊕ xN−1)(xN)

. . .

⊕ A11...10(x1)(x2) · · · (xN−1)(1 ⊕ xN)

⊕ A11...11(x1)(x2) · · · (xN−1)(xN), (1)

where Ax1,...,xN
= f (x1, . . . , xN).5 As Shannon pointed out [41], the number of different

possible functions is 22N
(this follows because each of the 2N coefficients Aα1,...,αN

can be
either one or zero), which is much larger than the number of functions that can be computed
using resources that scale no faster than as a polynomial of N , which scales asymptotically
as (CN)t , where C is a constant and t is a polynomial in N [40]. This counting argument
demonstrates that evaluating almost any Boolean function with N arguments requires com-
putational resources that are exponentially large in N . However, it does not provide a means
for determining whether or not a given function can be computed with resources bounded
by a polynomial of N .

The proposed relevance of phases of Boolean functions for computational complexity
relies on the observation that typical functions whose values are chosen independently and
randomly to be one or zero with equal probability for each input configuration are hard to
compute; there is essentially no simpler way to specify the function than to enumerate the
output for each input separately [32].6 Though it is true that when one chooses the output
values randomly, then the probability of obtaining, e.g., a function whose output is one for
all inputs is exactly the same as obtaining any other specific function, the constant function
is atypical. The RG approach identifies whether or not an individual function is in the phase
of generic Boolean functions.

The relationships between phases as defined here and computational complexity classes
are not simple. It is shown below that there are problems that are in P that correspond to
functions that are in the generic phase, and some non-generic functions correspond to prob-
lems that are not in P. The possible utility of characterizing phases of Boolean functions
to the study of computational complexity classes arises because of the plausibility of the
conjecture that the functions in the generic phase that can be computed with polynomi-
ally bounded resources have the property that they are close to a phase boundary in the
sense that they differ from a non-generic function on a small fraction of input configura-

5In (1) the use of modulo-two addition is not necessary, but using modulo-two addition is extremely con-
venient when one is characterizing the properties of the functions obtained when the RG transformation is
applied.
6Some non-generic functions are also hard to compute, but their presence or absence is irrelevant to the
question of whether a typical Boolean function in which the function values are chosen randomly can be
computed efficiently.

1066 S.N. Coppersmith

tions. If all functions that can be computed with polynomially bounded resources are either
in a non-generic phase or near a non-generic phase boundary, then demonstrating that P
and NP are distinct could be done if one could identify a problem in NP that gives rise to
functions that (in the limit N → ∞) are in the generic phase and also have the property that
all functions yielding the same output on almost all the input configurations are also in the
generic phase.

The paper is organized as follows. Section 2 defines the RG transformation that maps
a Boolean function of N variables into a Boolean function of N − 1 variables. It also
characterizes the behavior of generic Boolean functions when the RG transformation is
iterated repeatedly, and demonstrates that an attracting generic fixed point (and hence a
generic phase) exists, and that functions exist that are non-generic. Section 3 examines
the RG flows of functions in the generic phase, in particular how many iterations of the
renormalization transformation are required to transform a function whose outputs are cho-
sen independently and randomly to be one or zero with probabilities p and 1 − p to one
that is indistinguishable from a fixed point function, for which the two outputs are equally
probable. In Sect. 4 the relationships between phases and computational complexity classes
are explored. It is shown that the generic phase appears to include functions of N vari-
ables that can be computed with resources bounded by a polynomial of N , and that there
are non-generic functions that cannot be computed with resources bounded by a polyno-
mial of N . It is conjectured that every function corresponding to a problem that is in P is
close to being non-generic in the sense that it can be written as the sum of a non-generic
function plus a contribution that is nonzero on a small fraction of the input configura-
tions. Such a function can be identified by checking whether or not each of the functions
whose outputs differ from the original one on a small fraction of the input configurations
is non-generic, so if the conjecture holds, it provides a means to demonstrate that an in-
dividual function cannot be computed with resources bounded polynomially in N . Sec-
tion 5 discusses a specific class of Boolean functions that correspond to problems that are
in NP and have properties that make it plausible that they are in the generic phase and also
not near a non-generic phase boundary. Section 6 discusses the results in the framework
of phase transitions in condensed matter systems, which renormalization group transfor-
mations are typically used to study, and also discusses how the strategy discussed here
avoids the difficulties of “natural proofs” for addressing the P versus NP problem that
are described in [39]. Section 7 presents the conclusions. Appendix A presents the argu-
ments for why it is plausible that most functions that can be computed with polynomially
bounded resources can be written as a non-generic function plus a term that is nonzero
for a small fraction of input configurations. Appendix B shows that almost all Boolean
functions cannot be written either as a low-order polynomial plus a term that is nonzero
on a small fraction of the inputs or as a function that can be computed with resources
bounded by a polynomial of N plus a term that is nonzero on a small fraction of the in-
puts.

2 Renormalization Group Transformation

The renormalization group (RG) procedure we define takes a given function of N variables
and generates a function of N − 1 variables [19, 24, 48, 50, 51]. The variable that is elimi-
nated is called the “decimated” variable. The procedure can be iterated, mapping a function
of N − 1 variables into one of N − 2 variables, etc.

Using the Renormalization Group to Classify Boolean Functions 1067

The RG transformation proposed here specifies whether the original function’s value
changes if a given input variable is changed. Specifically, given a function f (x1, . . . , xN) ≡
f (x), we define

gi1(x1, . . . , xi1−1, xi1+1, . . . , xN)

≡ gi1(x
′) = f (x1, . . . , xi1−1,0, xi1+1, . . . , xN) ⊕ f (x1, . . . , xi1−1,1, xi1+1, . . . , xN), (2)

where ⊕ denotes addition modulo two,7 and the vector x′ denotes the set of undecimated
variables. The function gi1(x1, . . . , xi1−1, xi1+1, . . . , xN) is one if the output of the function f

changes when the value of the decimated variable xi1 is changed and zero if it does not. Once
gi1 has been obtained, the procedure can be repeated and one can define gi1,i2 as

gi1,i2(x1, . . . , xi1−1, xi1+1, . . . , xi2−1, xi2+1, xN)

≡ gi1,i2(x
′)

= gi1(x1, . . . , xi2−1,0, xi2+1, . . . , xN)

⊕ gi1(x1, . . . , xi2−1,1, xi2+1, . . . , xN)

= f (x1, . . . , xi1−1,0, xi1+1, . . . , xi2−1,0, xi2+1, . . . , xN)

⊕ f (x1, . . . , xi1−1,0, xi1+1, . . . , xi2−1,1, xi2+1, . . . , xN)

⊕ f (x1, . . . , xi1−1,1, xi1+1, . . . , xi2−1,0, xi2+1, . . . , xN)

⊕ f (x1, . . . , xi1−1,1, xi1+1, . . . , xi2−1,1, xi2+1, . . . , xN). (3)

It is straightforward to verify that the function gxi1 ,...,xim
(x′) obtained by decimating the m

variables xi1 , . . . , xim does not depend on the order in which the variables are decimated.

2.1 Generic Phase

First we examine functions for which each coefficient A(0)
α1,α2,...,αN

in (1) is an independent
random variable chosen to be one with probability p0 and zero with probability q0 = 1−p0,
where 0 < p0 < 1. Numerical results of the RG procedure applied to such functions are
shown in Fig. 1.

The coefficients A
(i1)
x1,...,xi1−1,xi1+1,...,xN

that characterize the function gi1(x
′) obtained by

decimating the variable i1 via (2) are

A(i1)
x1,...,xi1−1,xi1+1,...,xN

= Ax1,...,xi1−1,0,xi1+1,...,xN
⊕ Ax1,...,xi1−1,1,xi1+1,...,xN

. (4)

The original A(0)’s are independent random variables, so it follows that the A(i1)’s are inde-
pendent random variables that are one with probability p1 = 2p0q0 and zero with probability
1 −p1. After decimating � variables, the coefficients are still independent random variables,
and they are now one with probability p� and zero with probability 1 − p�, where the p�

satisfy

p�+1 = 2p�(1 − p�). (5)

7These polynomials have a natural interpretation in terms of arithmetic circuits, which are Boolean circuits
composed of two types of gates, AND and EXCLUSIVE-OR. See, e.g., [37].

1068 S.N. Coppersmith

Fig. 1 Results of renormalization group (RG) transformation applied to functions in the generic phase. In
both panels, the original function (top) is constructed by choosing the output value for each input configura-
tion of N = 14 variables independently and pseudo-randomly to be 1 with probability p and 0 with probability
1 − p. Configurations are shown after each two RG steps, so that in the four plots for each function, N takes
on the values 14, 12, 10, and 8. In the plots, the x-coordinates are the binary expansions of the values of the
first N/2 variables, and the y-coordinates are the binary expansions of the last N/2 variables. Left: Initial
function has p = 1/2, characteristic of the generic fixed point. Right: Initial function has p = 0.04; the “flow”
towards p = 1/2 as the RG is iterated is apparent (the fractions of nonzero outputs in the four plots in the
right panel are 0.0402, 0.141, 0.388, and 0.473)

Solving (5) yields

p� = 1

2

(
1 − (1 − 2p0)

2�)
. (6)

For any p0 satisfying 0 < p0 < 1, the values of the p� flow as � increases and eventually
approach the fixed-point value of 1/2, behavior that is analogous to that displayed by the
parameters used to specify the partition functions describing thermodynamic phases in sta-
tistical mechanical systems [19], and so we interpret this behavior as evidence that there is
a phase of generic Boolean functions.

It is consistent to call the phase generic because it is likely that the attracting fixed point
describes almost all Boolean functions. Evidence for this is that Fε , the fraction of Boolean
functions that have an output of one on a fraction (1 + ε)/2 of the Ω ≡ 2N input configura-
tions, is

Fε = 1

2Ω

Ω!
[Ω

2 (1 + ε)]![Ω
2 (1 − ε)]! ≈

√
2

πΩ
e−ε2Ω/2, (7)

Using the Renormalization Group to Classify Boolean Functions 1069

where the second line holds for ε � 1. Therefore, Fε vanishes as a double exponential
of N whenever ε > 2−βN with β < 1/2. This property is characteristic of functions with
p = 1/2. We choose to define the generic phase in terms of the results obtained after N/2
steps of the RG process. With this definition, functions in which the original A(0)’s are
chosen randomly and independently with p0 > 2−N(1

2 −ε), with ε infinitesimal, are in the
generic phase.8 Conversely, functions that yield a nonzero output for a fraction of input
configurations less than C2−N(1

2 +ε) or greater than 1 − C2−N(1
2 +ε), with C a constant of

order unity, are nongeneric.9

For functions in the generic phase, all the functions generated by the renormalization
procedure applied more than N/2 times but which still have of order N undecimated vari-
ables have the property that their output is nonzero for a fraction of input configurations
that deviates from 1/2 by an amount that is exponentially small in N . For any η � N that
is greater than N/2, the probability that all of the N !/[η!(N − η)!] functions yielded by η

renormalizations yield one for a fraction of the inputs that differs from 1/2 by an amount
less than 2−βN differs from unity by an amount that vanishes as a double exponential of N

for some positive β bounded away from zero.

2.2 Non-generic Functions

We next demonstrate that Boolean functions that can be written as polynomials of degree of
ξ or less with ξ < N have the property that they yield zero after ξ + 1 renormalizations, for
any choice of the decimated variables.

First we examine a simple example. The parity function P(x1, . . . , xN), which is 1 if an
odd number of input variables are 1 and 0 if an even number of the input variables are 1 [18,
21, 49, 52], can be written as

P(x1, . . . , xN) = x1 ⊕ x2 ⊕ · · · ⊕ xN . (8)

There are many less efficient ways to write the parity function, but the result of the renor-
malization procedure does not depend on how one has chosen to write the function, since it
can be computed knowing only the values of the function for all different input configura-
tions. For the parity function, one finds, for any choice of decimated variables xj1 and xj2 ,
the functions resulting from one and two renormalizations, gP

j1
(x′) and gP

ij1,j2
(x′), are:

gP
j1

(x′) = xj1 ⊕ (1 − xj1) = 1,

gP
ij1,j2

(x′) = 0.

Thus, applying the renormalization transformation to the parity function yields zero after
two iterations, in contrast to the behavior of a generic Boolean function.

More generally, for any term of the form T = yi1yi2 · · ·yim , with yi = xi or 1 − xi ,
the quantity T (xi = 1) ⊕ T (xi = 0) is either zero (if yi does not occur in T) or else is

8This result follows by writing (5) as p�+1 −p� = p� −2p2
�

and assuming that the variation with � is slow, so

that it may be approximated using the differential equation dp(�)/d� = p(�) − 2p(�)2, which for p0 < 1/2
has the solution p(�) = 1/[2 + ((1 − 2p0)/p0) exp(−�)] ≈ 1/(2 + exp(−�)/p0).
9This follows because the inequality p�+1 ≤ 2p� holds even for non-random functions, where p� is defined
as the fraction of input configurations for which the output is one.

1070 S.N. Coppersmith

Fig. 2 Results of renormalization group (RG) transformation applied to two functions that are in nongeneric
phases. In both panels, the original function (top) depends on N = 14 variables. Configurations are shown
after every other RG step. In the plots, the x-coordinates are the binary expansions of the values of the first
N/2 variables, and the y-coordinates are the binary expansion of the last N/2 variables. Left: Initial function
is a third order polynomial, f = a0 + ∑

i bixi + ∑
ij cij xixj + ∑

ijk dijkxixj xk , where the sums are all
modulo two, and each coefficient is chosen to be zero or one pseudo-randomly with equal probability. The
fixed point is the function in which the output is zero for every input configuration. Right: Initial function is
one if the sum of the input values is divisible by 3, and zero otherwise; after one iteration a fixed point is
reached in which the output value is unity for 2/3 of the input configurations, clearly different than that for a
generic function, where the fraction of input configurations yielding nonzero output is very close to 1/2

the product of m − 1 instead of m of the y’s; for example

T (yi1 = 1) ⊕ T (yi1 = 0) = yi2 · · ·yim . (9)

Because the effect of the RG procedure on the sum of terms is equal to the sum of the results
of the transformation applied to the individual terms, any function that is the mod-2 sum of
terms that are all products of fewer than m y’s will yield zero after m renormalizations,
for any choice of the decimated variables. It follows immediately that a function that is a
polynomial of degree ξ or less has the property that applying the RG transformation to it
ξ +1 times yields zero for any choice of the decimated variables. This behavior is illustrated
in the left panel of Fig. 2.

Next we note that the sum of a low-order polynomial and a small perturbation (a func-
tion that is nonzero on a very small fraction of input configurations) is a non-generic func-
tion. This follows because the renormalization group transformation is linear: if a function
f (x1, . . . , xN) can be written as the sum of a polynomial of order ξ with ξ < N/2 and a

Using the Renormalization Group to Classify Boolean Functions 1071

term that is nonzero on a fraction of input configurations that is less than 2− N
2 (1+ε), then the

functions resulting after N/2 renormalizations are nonzero on a fraction of inputs that is less
than 2−εN .

Thus we have demonstrated that the RG transformation distinguishes generic Boolean
functions from functions that can be written as polynomials of degree ξ or less, when
ξ < N/2. Moreover, perturbing one of these functions slightly by adding a component that
is nonzero on an exponentially small fraction of input configurations yields a nongeneric
function. The qualitatively different behavior upon renormalization of polynomials of de-
gree ξ from generic Boolean functions can be interpreted as evidence that these two classes
of functions are in different phases.

We now demonstrate that the RG method also identifies as non-generic functions that
depend on a composite quantity such as the arithmetic sum of the variables. Efficiently
computable functions with this property include MAJORITY (which is one if more than
half the inputs are set to one, and zero otherwise) [38] and DIVISIBILITY MOD p (which
is one if the number of inputs that are set to one is divisible by an odd prime p and
zero otherwise) [43, 44]. The renormalization group approach distinguishes such functions
from generic Boolean functions because the output of all the functions in the sequence is
constrained to be identical for very large sets of input configurations. We first show that
MAJORITY and DIVISIBILITY MOD p are both distinguished from a generic Boolean
function by the renormalization group procedure, and then we argue that the RG procedure
distinguishes any function of the arithmetic sum of the inputs from a generic Boolean func-
tion. We expect that the argument will be generalizable to apply to a broad class of functions
that depend on other composite quantities that are specific combinations of the input vari-
ables.

First we consider the behavior when the RG transformation is applied to DIVISIBILITY
MOD 3. Since this function is nonzero when the arithmetic sum

∑N

j=1 xj is divisible by 3,
changing an input xi changes the output value when the sum of the other input variables is
either zero or two. Thus, the renormalized function gi(x′) is nonzero for any i on a frac-
tion of the input configurations that is very close to 2/3. Every succeeding renormalization
also yields a function that is nonzero when the sum of the remaining variables is either
zero or two. This behavior differs from that of a generic Boolean function, in which the
renormalized functions are nonzero for a fraction of inputs that is very close to 1/2. More
generally, when the RG is applied to DIVISIBILITY MOD p, with p an odd prime, the be-
havior of the sequence of functions is determined by the value of the mod p remainder of the
undecimated variables. The functions in the sequence yield the output one when the remain-
der mod p takes on certain values, and typically, after a small number of iterations, these
values cycle with a finite period. Therefore, the fraction of input configurations that lead to
a nonzero input essentially cycles also (the cycling is not exact only because the fraction
of input configurations with a given value of the remainder mod p changes very slightly
with N), and, since p is odd, none of the fractions in the cycle is close to 1/2.

The behavior obtained when the RG procedure is applied to the MAJORITY function is
also significantly different from that of a generic Boolean function. The first renormalization
step yields a function that is nonzero when the sum of the undecimated variables is N/2−1,
and the second step yields a function that is nonzero when the sum of the undecimated
variables is either N/2 − 2 or N/2 − 1. The functions obtained after j decimations are
nonzero on a fraction of inputs that is bounded above by Cj/

√
N , where C is a constant

of order unity, so long as j � √
N . The original function is thus identified as non-generic

because so long as the number of renormalizations applied is much smaller than
√

N the
renormalized functions are all nonzero on a fraction of input configurations that is much
less than 1/2.

1072 S.N. Coppersmith

Next we argue that the renormalization group approach distinguishes any function of the
arithmetic sum of the inputs from a generic Boolean function. The intuition underlying the
argument is that all the functions in the sequence depend only on the arithmetic sum of the
undecimated variables, and when the number of undecimated variables is N , the number of
configurations of the undecimated variables whose arithmetic sum is constrained to be S , is
N !/S!(N − S)!. Using Stirling’s series [34], one can show explicitly that when N is large,
then the number of configurations with a given value of S is a polynomial in 1/N times 2N

for a number of values of S that grows as the square root of N . Therefore, the differences
in the fraction of configurations yielding different values of N decay polynomially with N ,
and the fraction of input configurations yielding one should either be exactly 1/2 or else
must deviate from 1/2 by an amount that decreases only polynomially with N .

Many other nongeneric functions exist that are not described in this section, and exhaus-
tive enumeration of all such functions is not likely to be feasible. The possible utility of
being able to identify functions as nongeneric using the RG method depends on whether
one can relate phases to other methods of classifying Boolean functions. This question is
addressed in Sect. 4 below and in the appendices.

3 Renormalization Group Flows within the Generic Phase

In this section we investigate the behavior of a simple subset of the renormalization group
flows in the generic phase. We consider the class of functions in which the output value for
a given input configuration is chosen independently and randomly to be one with probabil-
ity p and zero with probability 1 − p. A function at the generic fixed point has p = 1/2,
and yields an output of one on a fraction of input configurations that is 1/2 + O(2−N/2)

(reflecting the usual square-root fluctuations for a random process).10 We ask how many
renormalizations of a function with p �= 1/2 are required before the renormalized value of
p is indistinguishable from 1/2.

This question can be addressed using (6), an explicit formula for pj , the value of p after
the j th application of the renormalization transformation. If one is interested in the behavior
for large j , which is appropriate here because one is asking when pj becomes exponentially
close to 1/2, one can write

pj = 1

2

(
1 − (1 − 2p0)

2j)

= 1

2

(
1 −

(
1 − 2p02j

2j

)2j)

≈ 1

2

(
1 − e−2p02j)

. (10)

We wish to find j ∗ so that |pj −1/2| < δ for all j > j ∗, where δ = O(
√

1/Ω), with Ω = 2N .
We find

1

2
e−2p02j∗ = δ

⇒ j ∗ = log2

(
ln

1

δ

)
− log2(p0). (11)

10As shown in the previous section, the value p = 1/2 is special not only because it is the fixed point value,
but also because almost all Boolean functions yield an output of one on a fraction of outputs that is 1/2 +
O(2−N/2).

Using the Renormalization Group to Classify Boolean Functions 1073

When p0 is no smaller than Nz for some z < ∞, then j ∗ grows logarithmically with N for
any δ ≥ 1/2N . When p0 ∝ 2−Ny

for some y > 0, then j ∗ grows as Ny . With our definition
that the generic phase consists of functions with j ∗ < N/2, functions with 2−N/2 < p0 <

1 − 2−N/2 are in the generic phase.

4 Relationships between the Phase of a Function and the Computational Resources
Needed to Compute the Function

This section addresses the relationships between the phase of a Boolean function and
whether or not the value of the function can be determined with computational resources
bounded by a polynomial of N , the number of input variables.

We argue here that there are functions in the generic phase that can be computed with
polynomially bounded resources, and that there are non-generic functions that cannot be
computed with polynomially bounded resources. Some functions that can be computed ef-
ficiently that we expect to be in the generic phase are those of the form

N∑

j=1

k∗(j)∑

k=1

yi1(k) · · ·yij (k), (12)

where the sums are modulo two, each yi(k) is either xi(k) or 1−xi(k), and each k∗(j) grows no
faster than polynomially with N . These functions are the sum of polynomially many terms
that are each products of j factors, with j = 1, . . . ,N . A term with j factors is nonzero on
the fraction 2−j of the input configurations, and this fraction can increase by a factor of two
at each decimation. The terms with j ≤ ξ yield zero after ξ + 1 renormalizations, but after
ξ + 1 renormalizations the terms with j = ξ + 1 + m are nonzero on the fraction 2−m of the
inputs, which need not be small. Therefore, for any number of renormalizations up to N/2
it is possible for the renormalized functions to yield a nonzero output for very close to half
of the input configurations.

Conversely, the number of non-generic functions of N variables is much greater than
the number of functions that can be computed with resources bounded polynomially in N ,
and so some non-generic functions must be associated with problems that are not in P. This
can be seen by noting that the number of polynomials of N variables with degree ξ is

2
∑ξ

k=1 N !/(ξ !(N−ξ)!),11 which, when ξ � N , ∼ 2(Ne/ξ)ξ . When ξ scales as a fractional power
of N , this is much larger than the number of functions that can be computed with resources
bounded by a polynomial of N [40]. Therefore, since we define a phase based on the behav-
ior yielded by repeated renormalization, the functions that correspond to problems in P do
not comprise a phase.

The conjectured relevance of phases for yielding insight into complexity classes relies
on noting that a product of M variables is nonzero for only a fraction 2−M of the input
configurations (for example, the term x1x2 · · ·xM is nonzero only for input configurations

11To obtain the number of polynomials of degree ξ or less, note that each can be written as a sum of terms
of the form xi1 · · ·xik

for all k ≤ ξ . There are N !/k!(N − k)! ways to choose k indices out of N possibilities,

so there are
∑ξ

k=1 N !/k!(N − k)! different possible terms in the polynomial, each of which occurs with a

coefficient of either one or zero. Thus, there are 2
∑ξ

k=1 N !/k!(N−k)! different polynomials of degree ξ or less.

1074 S.N. Coppersmith

that have x1 = x2 = · · · = xM = 1). The sum of a polynomially large number t (N) of terms
that are the product of M variables is nonzero only on a fraction of inputs that is bounded
above by t (N)/2M . A typical Boolean function is obtained by adding up a number of terms
that grows exponentially with N , each of which is nonzero on a fraction of the inputs that
is exponentially small in N . This procedure is not available for functions for which the
number of operations that can be used to construct them is bounded above by a polynomial
of N. Functions that are constructed in a polynomially bounded number of operations that
yield an output that is nonzero on a fraction of input configurations is close to 1/2 either
have some terms with a small number of factors or else involve a delicate balancing of
sums and products to keep the fraction of configurations on which the terms are nonzero
from becoming too small. It is plausible that if delicate balancing has occurred, the resulting
function would be nongeneric. We conjecture that the any Boolean function of N variables
f (x1, . . . , xN) that can be computed with polynomially bounded resources can be written as
the sum:

f (x1, . . . , xN) = N (x1, . . . , xN) ⊕R(x1, . . . , xN), (13)

where N (x1, . . . , xN) is a nongeneric function and the remainder term R(x1, . . . , xN) is
nonzero on a fraction of input configurations that is bounded above by C2−ANB

, where C, A,
and B are positive constants bounded away from zero. Appendix A presents arguments to
support this conjecture, while Appendix B shows that almost all Boolean functions do not
obey (13).

Using the RG transformation to identify functions that satisfy (13) is not entirely
straightforward—the obvious strategy, renormalizing ξ + 1 times and checking whether or
not each function in the sequence yields a nonzero output on a fraction of the input config-
urations that is exponentially close to 1/2, fails because renormalization yields exponential
growth in the fraction of input configurations for which the remainder term is nonzero.
For instance, if N (x1, . . . , xN) is a polynomial of order ξ with ξ ∝ Ny with 0 < y < 1
and R(x1, . . . , xN) is nonzero on a fraction of input configurations that is of order 2−ANy

,
then, because the remainder term grows upon renormalization, all the functions obtained
by multiple renormalization steps are nonzero on a substantial fraction of the input con-
figurations. To circumvent the difficulty caused by the growth of the remainder term upon
renormalization, one can examine all functions that differ from the function in question
on a small fraction of input configurations. If the original function obeys (13), then one
of the “perturbed” functions will have a remainder term that is zero, and applying the re-
normalization transformation to it ξ + 1 times yields zero for all choices of the decimated
variables. A similar procedure can be used to identify other functions that can be written
as sums of nongeneric functions and small generic pieces—one can examine all functions
that yield the same output for all but a small fraction of the input configurations and de-
termine whether or not one or more of those functions exhibits nongeneric behavior upon
renormalization.

5 Application of RG to the Kauffman Net Predecessor Problem

This section discusses Kauffman nets, a specific class of dynamical models that we will use
to define a function that we propose as a candidate for investigating fundamental differences
between functions that correspond to problems that are in P and functions that correspond to
problems that are in NP. A Kauffman net (also called a Boolean network or an N-K model)
[2, 25, 29] has N elements {σ1, σ2, . . . , σN }, each of which is a Boolean variable σi ∈ {0,1},

Using the Renormalization Group to Classify Boolean Functions 1075

i = 1,2, . . . ,N . The value of the ith element σi at time t + 1 is determined by the value of
its k inputs j1(i), j2(i), . . . , jK(i) at time t , σj1(i)(t), σj2(i)(t), . . . , σjK(i)(t), via

σi(t + 1) = fi(σj1(i)(t), σj2(i)(t), . . . , σjK(i)(t)), (14)

where each fi is a randomly chosen Boolean function that depends on K arguments. The
K inputs for each element and the Boolean functions fi are all chosen randomly before
beginning and then fixed throughout the computation. We will denote N (14) for all the
elements as {σ(t + 1)} = f ({σ(t)}).

Kauffman nets have been studied because of their relevance to physics [4–6, 10, 36],
social sciences [3, 22], and biology (Kauffman’s original motivation was to study gene reg-
ulation and control [25–30, 45]). The model exhibits a phase transition as K is varied; K < 2
is a “frozen” phase, while K > 2 exhibits chaotic dynamics.

Kauffman nets with any K ≤ A log2 N can be specified using a number of bits that grows
as a polynomial of N , and calculation of a successor configuration can be done with polyno-
mially bounded resources. In contrast, when K ≥ 3, all known algorithms for determining
whether a given configuration has a predecessor appear to require computational resources
that grow exponentially with N [20]. Our particular interest here is in characterizing the
predecessor problem when K ∝ logN .

When K = N , although specifying the model requires space that grows exponentially
with N , one can still ask how many evaluations of the Boolean functions are required to
determine whether such a predecessor exists. A candidate solution can be verified with a
single evaluation of each Kauffman net function, but because in this case each configuration
is a truly random function of its predecessor [15–17], the only way to determine whether a
predecessor exists is to check all of the exponentially many candidates [8]. In the parlance
of computer science, the Kauffman net with K = N is an oracle relative to which P and NP
are not equal [8].

When K ∝ logN , the successor function of a Kauffman net is non-generic. This can be
seen by noting that each output element only depends on K input elements, so changing an
input element must affect fewer than K of the N output bits, and applying K renormaliza-
tions to the successor function must yield zero. Conversely, since the predecessor problem
is nonlocal, it is extremely plausible that whether or not changing one element of the target
configuration affects whether a predecessor exists depends on the values of a large number
of other elements in the successor [13]. However, it is not known whether the function that
is one if a given configuration has a predecessor and zero if not is in the generic phase, and
if so, how far from a non-generic phase boundary it is.

The predecessor function is very unlikely to have an output value of one for a fraction
of input configurations that is very close to 1/2, but it is extremely plausible that this frac-
tion is no smaller than 2−Nz

for some z < 1. When K = N , as N → ∞ the probability
that a configuration has no predecessor approaches 1/e; this follows because the successor
to each of the 2N configurations is chosen independently and randomly, so that the proba-
bility that a configuration is not the successor to any input configuration is (1 − 1/2N)2N

,
which approaches 1/e as N → ∞ [8]. When K is finite, the fraction of configurations with
predecessors decreases exponentially with N , because the probability that a randomly cho-
sen configuration has a predecessor is bounded above by the value (1 − 2−(K+1))N . This
bound follows because with probability 2−K the function determining the value of any sin-
gle element is independent of the values of all its inputs, and for such a function, with
probability 1/2 the output value will be inconsistent with the target [14]. For fixed K this
upper bound on the probability that a randomly chosen configuration has a predecessor van-
ishes as N → ∞, while when K = A log2(N), this bound approaches 1 − 1

2 N−(A−1), which

1076 S.N. Coppersmith

approaches unity as N → ∞ when A > 1. Thus, when K ∝ logN , it is plausible that as
N → ∞ the fraction of configurations that have predecessors is either nonzero or else de-
cays more slowly than exponentially in N . This condition is necessary but not sufficient for
the predecessor function to be in the generic phase and also far from a non-generic phase
boundary. One must also show that performing N/2 RG iterations yields a function that
is nonzero on a fraction of input configurations that differs from 1/2 by an amount that is
exponentially small in N , which essentially requires that correlations between the function
values for different input configurations become negligible as the RG transformation is iter-
ated. It is plausible that the extreme sensitivity of the Kauffman net predecessor problem to
small changes in the problem statement [13] could be a useful property to exploit in demon-
strating that correlations between the function values for different input configurations can
be neglected, but demonstrating this is a challenging outstanding problem.

6 Discussion

This paper presents a renormalization group approach that distinguishes generic Boolean
functions of N variables from non-generic functions, examples of which include those that
can be written as a polynomial of degree ξ , with ξ � N , and also those that depend only
on composite quantities such as the arithmetic sum of all the input variables. The method
provides a consistent framework for identifying many different functions as non-generic—
one examines whether every function in the sequence of renormalized functions yields an
output of one on a fraction of input configurations that differs from 1/2 by an amount that
is exponentially small in N . The identification of phases of Boolean functions is useful
because it provides a method for determining whether an individual function has properties
characteristic of typical randomly chosen functions.

The procedure used here of using the behavior yielded by a renormalization group trans-
formation to identify different phases of Boolean functions is entirely analogous to a pro-
cedure presented by Wilson [51] to identify different thermodynamic phases of the Ising
model, used to describe magnetism in solids. Wilson showed that individual configurations
of Ising models could be identified as being in either a ferromagnetic phase or paramag-
netic phase by repeatedly eliminating spins and examining the resulting configurations—if
after many renormalizations all the spins are aligned, then the system is in the ferromag-
netic phase, while if after many renormalizations the spin orientations are random, then the
system is in the paramagnetic phase.

The relationship between phases and computational complexity classes is not simple.
Functions computable with polynomially bounded resources do not comprise a phase—
there are functions that are in a non-generic phase that cannot be computed with polyno-
mially bounded resources, and there are functions that can be computed with polynomially
bounded resources that are in the generic phase. The possibility of using the RG approach to
demonstrate that a given Boolean function arises from a problem that is not in P arises from
the conjecture that the functions that can be computed with polynomially bounded resources
that are in the generic phase are all close to a phase boundary of a non-generic phase. If this
conjecture holds, then this work provides a natural framework for understanding why the P
versus NP question is so difficult: distinguishing computational complexity classes involves
finding the quantitative location of functions in the phase diagram, a property that is not
robust upon renormalization.

Using the Renormalization Group to Classify Boolean Functions 1077

Fig. 3 (Color online) Schematic phase diagram for Boolean functions. Within the set of all Boolean functions
of N Boolean variables as N → ∞, there is a generic phase, and there are also many non-generic phases, two
of which are functions that can be written as polynomials of order no greater than ξ with ξ � N , and functions
of composite variables such as the arithmetic sum of all the inputs. As discussed in Appendix B, almost all
Boolean functions are generic and also far from any non-generic phase. Though P does not correspond to a
phase, Appendix A argues for the conjecture that all functions that arise from problems that are in P are either
non-generic or else very close to a phase boundary of a non-generic phase

Based on the analogy between RG results for magnets and the qualitatively different be-
havior of the renormalization group flows for generic Boolean functions and for nongeneric
functions such as low-degree polynomials and functions of composite variables, we propose
the schematic phase diagram for Boolean functions shown in Fig. 3.

If this conjecture holds, then the procedure described here leads to a specific algorithmic
approach to the P versus NP question—if a given function that is obtained as the answer to
a problem in NP fails to be close enough to a non-generic phase, then one has shown that P
is not equal to NP. Section 5 presents a specific family of candidate functions that may be
useful for implementing the strategy proposed in this paper (see also [13]), but the strategy
can be implemented for any candidate function. Appendix A argues that the construction
of a function that can be computed with polynomially bounded resources that does not
satisfy (13) requires delicate balancing that leads to nongenericity (such as the existence of
a composite variable), but the argument is only speculative. Progress on this issue is the key
to using the RG approach to be able to address the P versus NP question. Appendix B shows
that almost all Boolean functions are far from all low-order polynomials and also from all
functions that can be computed with polynomially bounded resources.

The strategy discussed in Sect. 4 for using the renormalization group approach to show
that a function cannot be computed with polynomially bounded resources requires determin-
ing not only that it is not in a non-generic phase but also that it is not near a phase boundary,
a task that appears to require resources that grow faster than exponentially with N . This
superexponential scaling means that the procedure proposed here cannot be used to break
pseudorandom number generators, a difficulty that would arise if the procedure were a “nat-

1078 S.N. Coppersmith

ural proof” that could be implemented with resources that scale no faster than exponentially
with N [39]. However, direct numerical implementation of the procedure is not likely to be
computationally feasible.

These work leaves many unanswered questions. One important one is, of course, whether
the conjecture that all functions that can be computed with polynomially bounded resources
are close to a non-generic phase boundary is valid. Another is whether the Kauffman net
predecessor problem is in the generic phase and far from any generic phase boundary (that
is, whether a number of renormalizations of order log(N) yields a series of functions that
all yield an output of one on a fraction of input configurations that differs from 1/2 by an
amount that decays exponentially with N). But many other questions not aimed at under-
standing computational complexity classes are also unanswered at this stage. We do not
know how to estimate of the number of functions that are in non-generic phases and there-
fore have not shown that almost all functions are generic (though this is extremely reason-
able intuitively). Characterizing the relevant and irrelevant operators of the RG would also
be extremely useful and important, for it would provide a method for, e.g., demonstrating
that certain correlations between function values for different input configurations were ir-
relevant operators and hence would disappear at the RG fixed point.

7 Conclusions

This paper presents a renormalization group approach that can be applied to Boolean func-
tions of N Boolean variables. It can be used to identify a generic phase of Boolean functions
and distinguish functions in this phase from nongeneric functions such as polynomials of
degree ξ with ξ � N and functions that depends only on a composite variable such as the
arithmetic sum of the values of the individual inputs. It is shown that phases do not cor-
respond to computational complexity classes, but understanding the relationships between
generic and non-generic phases may yield new insight into the distinctions between compu-
tational complexity classes.

Acknowledgements The author is grateful to Prof. Daniel Spielman for pointing out an error in a previous
version of the manuscript, and for support from NSF grants CCF 0523680 and DMR 0209630.

Appendix A: Characterization of the Functions that Can Be Constructed
with a Polynomially Large Number of Operations

In this appendix we examine the properties of functions that can be computed with polyno-
mially bounded resources, and we present arguments to support the conjecture that all such
functions can written in the form (13), which is the sum of a nongeneric function plus a cor-
rection term that is nonzero on a fraction of input configurations that is less than C2−ANB

for
positive C, A, and B bounded away from zero. To motivate this conjecture, we first discuss
the intuitive motivation for thinking that functions that can be computed with polynomially
bounded resources are all close to non-generic functions.

Any Boolean function can be written as the result of a computation performed by a set of
AND and XOR (exclusive-or) gates [47]. There is a significant difference in computational
power of a set of gates of a given size depending on whether or not the output of the gates
can be used as the input for more than one other gate (in other words, whether or not the
gates have fan-out that is greater than or equal to one). For example, it has been proven that

Using the Renormalization Group to Classify Boolean Functions 1079

computing DIVISIBILITY MOD 3 requires exponentially many gates if the gate fan-out is
one but polynomially many gates if the gate fan-out is two or more [43, 44, 47]. Problems
that are in P give rise to functions that can be computed using a set of gates whose size scales
as a polynomial of N , the size of the input, when the gates have fanout of two or more. Using
the output of some gates as inputs of other gates can reduce the number of gates required
to perform a given computation from exponential to polynomial in N only if some outputs
are reused many times,12 meaning that the same composite quantity were to enter into many
different intermediate results in the calculation. This observation leads to the conjecture that
a function that can be computed with polynomially many gates either is close to a low-order
polynomial or else contains a dependence on particular fixed combinations of variables that
enter a large number of times and hence lead to non-generic behavior.

To argue further why it is plausible that all functions that can be computed with resources
bounded by a polynomial of N satisfy (13), we consider the process by which functions can
be constructed. We first examine functions that can be computed with polynomially bounded
resources that are close to low-order polynomials, and then examine known functions that
can be computed with polynomially bounded resources that are not approximable by low-
order polynomials, arguing that their construction involves delicate balancing that may give
rise to nongeneric properties, one example being the emergence of a composite variable on
which the function depends.

First we show that a starting polynomial that is the sum of polynomially many terms
whose factors are all either xi or (1 − xi) satisfies (13). Then we show that the sum of two
functions that each obey (13) also satisfies (13), and also that the coefficient multiplying the
correction term grows sufficiently slowly that the bound remains true even after a number
of additions that grows polynomially with N . We then consider products of such functions.
The behavior is more complicated, but we argue that a similar decomposition works because
one of two things will happen: either terms with a large number of products will be nonzero
on a small fraction of input configurations, or else special balancing of terms will have taken
place, which plausibly gives rise to nongeneric behavior.

First consider a polynomial A(x1, . . . , xN) that is the mod-2 sum of polynomially many
terms that are all of the form yi1 · · ·yim , where yi is either xi or 1 − xi :

A(x1, . . . , xN) = C0 +
N∑

η=1

Mη∑

kη=1

yi1(η,kη) . . . yiη(η,kη). (15)

Here, C0 is a constant, η denotes the number of factors of yi in a term, kη is the index labeling
the different terms with η factors, ij (η, kη) denotes the index of the j th factor in the term kη ,
and each Mη , the number of terms with η factors, is bounded above by a polynomial of N .
We will obtain bounds on the number of configurations for which the remainder is nonzero
by considering standard addition instead of modulo-two addition, which means that we will
overcount by including configurations for which an even number of terms in the polynomial
expansion are nonzero. Each term with η factors is nonzero only on a fraction 2−η of the
inputs. Therefore, if we define ρA(η) to be the fraction of inputs of A(x1, . . . , xN) for which
the sum of all the terms with η factors is nonzero, we have

ρA(η) ≤ CA2−αη, (16)

12A fan-out of two is sufficient for generating the same output a large number of times because one of the
outputs could be the input of a gate that takes the AND of that input and one, yielding two more outputs with
the same value.

1080 S.N. Coppersmith

for constant CA and α = 1
2 − ε, with ε infinitesimal. If one chooses η ∝ NB for some B > 0,

then (13) holds.
Now consider the addition of two functions F1(x1, . . . , xN) and F2(x1, . . . , xN) with

remainder terms R1 and R∈ that are each less than 2NB
for some B > 0. Again we

use standard addition instead of modulo-two addition, and note that because the sum
RS(x1, . . . , xN) = R1(x1, . . . , xN) + R2(x1, . . . , xN) is nonzero only if one of the sum-
mands is, we have that the fraction of inputs on which the remainder of the sum is nonzero,
ρRS

, satisfies

ρRS
≤ ρR1 + ρR2 , (17)

and the sum also obeys (13). Adding polynomially many terms can increase the prefactor
only by an amount that grows no faster than polynomially in N , so the remainder stays
exponentially small in NB .

We next consider the product of two functions that satisfy (16). We write

A(x) = NA(x) +RA(x),

B(x) = NB(x) +RB(x),
(18)

where NA and NB are nongeneric, and RA(x) and RB(x) are both nonzero on a fraction of
inputs that is less than 2−ANB

for some positive y bounded away from zero.
We write the product of A(x) and B(x) as

D(x) = A(x)B(x)

= (NA(x) +RA(x))(NB(x) +RB(x))

= NA(x)NB(x) +NA(x)RB(x) +RA(x)NB(x) +RA(x)RB(x). (19)

Now NA(x)RB(x) can only be nonzero for an input configuration if RB(x) is (this follows
since a product is nonzero only if each of its factors is nonzero), and, similarly, RA(x)RB(x)

can only be nonzero for an input configuration if both RA(x) and RB(x) are, so the sum of
the last three terms must be nonzero on a fraction of inputs that is less than ρRA

+ ρRB
.

Therefore, these contributions to the remainder term in the product remain exponentially
small in NB even after polynomially many multiplications. Therefore, it only remains to
consider the properties of the product of the nongeneric functions NA(x)NB(x). That the
product of nongeneric functions need not be nongeneric can be seen by considering the case
where the Nα(x) are low-order polynomials (the product of O(N) low-order polynomials
can be a polynomial of order N). So for now let us assume that NA(x) and NB(x) are
polynomials of degree ξ = NB , and then write

NA(x)NB(x) = P
ξ

D(x) + R
ξ

D(x), (20)

where P
ξ

D(x) is a polynomial of degree ξ and R
ξ

D(x) is a remainder term that we would like
to bound.

To bound the magnitude of the remainder, let us multiply out the polynomials in (20) so
that they are all sums of terms that are products of the form yi1 · · ·yij , terms that we will

denote as “primitive.” Let TA be the number of primitive terms in P
ξ

A(x), and TB be the
number of primitive terms in P

ξ

B(x). Note that every primitive term in the product with more
than ξ factors is nonzero on a fraction 2−ξ or less of the input configurations.

Since the total number of primitive terms in R
ξ

D(x) is bounded above by TATB , the frac-
tion of inputs on which the sum of the terms with at least ξ factors is nonzero is bounded

Using the Renormalization Group to Classify Boolean Functions 1081

above by TATB2−ξ . So long as TA and TB are both less than exponentially large in ξ , then
this remainder term is exponentially small in ξ . The multiplication process must start with
values of TA and TB that are both bounded by a polynomial of N , but because multiplica-
tions can be composed, we need to examine the behavior of TD , the number of primitive
terms in P

ξ

D(x).
A simple upper bound for TD is obtained by ignoring all possible simplifications that

could reduce the total number of terms in the product:

TD ≤ TATB. (21)

This equation describes geometric growth. If M polynomials are multiplied together, all of
which have fewer than CNY terms for fixed C and Y , then the total number of terms in the
product, TM, satisfies the bound

TM ≤ (CNY)M. (22)

This bound on the number of terms in the product is much smaller than 2ξ so long as M
satisfies

M � ξ/(Y log2 N + log2 C). (23)

A useful bound on multiplicative terms that are products of more than ξ/(Y log2 N) fac-
tors can be obtained by exploiting the fact that the product of two functions is nonzero for a
given input only if each of the factors is. Specifically, consider the product AB , and say that
A is nonzero on a set of MA inputs. If B is nonzero on less than a fraction σ of the inputs in
this set for some 1/2 < σ < 1, then the product AB is nonzero on fewer than σMA inputs,
and if not, then the product A(1 − B) is nonzero on fewer than (1 − σ)MA inputs, and one
can write AB = A + A(1 − B).13

The result of M multiplications is then nonzero only on a fraction of inputs bounded
above by 2−M log2 σ . Therefore, a product of more than ξ/Y log2(N) factors is nonzero on
no more than a fraction 2−C̃ξ/ log2(N) of the inputs, where C̃ is a positive constant, and the
entire product can be moved into the remainder term.

The arguments above indicate that the remainder term tends to be small for products be-
cause the number of terms in the polynomial that are of order ξ or less can be bounded
for products of small numbers of terms, and products of many terms are nonzero on a
small enough fraction of the input configurations that they can be considered to be part of
the remainder term. However, there are functions that can be computed with polynomially
bounded resources that do not obey (13). Two examples of functions that can be computed
efficiently that have been proven to violate (13) are MAJORITY (which is one when more
than half input variables have been set to one and zero otherwise) [38] and DIVISIBILITY
MOD p, which is one if the sum of the input variables is divisible by an odd prime p [43, 44].
However, there are doubtless many others. The reason for considering these simple exam-
ples is that it is instructive to consider algorithms for computing these functions to see how
they “avoid” being close to low-order polynomials.

13One might worry that products of the form A1A2 · · ·AM , where each Ai is nonzero on more than
half of the inputs, and M is of order N , might pose a problem, for if one writes A1A2 · · ·AM =
(1 − A′

1)(1 − A′
2) · · · (1 − A′

M
), then the number of terms with m factors is M!/(M − m)!m!, which can

be as large as 2M/2 (when m = M/2). This term proliferation is not a problem if one chooses σ to be strictly
greater than 1/2 (say, 3/4), since the number of terms with a given number of terms in the product is over-
whelmed by the decrease in the fraction of inputs for which each individual term is nonzero.

1082 S.N. Coppersmith

Some pseudocode for a simple algorithm for solving DIVISIBILITY mod 3 is:

divisibility mod 3:

start: remainder0[0] = 1, remainder1[0] = remainder2[0] = 0

for each i > 0

remainder0[i + 1] = remainder0[i] ∗ (1 − xi+1) ⊕ remainder2[i] ∗ xi+1

remainder1[i + 1] = remainder1[i] ∗ (1 − xi+1) ⊕ remainder0[i] ∗ xi+1

remainder2[i + 1] = remainder2[i] ∗ (1 − xi+1) ⊕ remainder1[i] ∗ xi+1

answer = remainder0[N]
The quantity remainder0[i] + remainder1[i] + remainder2[i] is unity for every i, and
the fraction of inputs for which each remainder variable is nonzero is very close to 1/3
and does not decay exponentially with i. The fractions do not decay or grow because
the equation for each remainder for a given i is the sum of two products. The product
remainder0[i](1 − xi+1) is nonzero on half the inputs on which remainder0[i] is nonzero,
and similarly for the other term remainder2[i] ∗ xi+1. Because remainder0[i + 1] is the
sum of two terms, each of which is nonzero on almost exactly half the outputs for which
remainder0[i] is nonzero, remainder0[j] remains of order of but less than unity for all j .
It is plausible that this repeated exquisite cancellation in the algorithm is necessary for the
products of many terms to remain of order unity, and underlies the non-generic behavior
upon renormalization. Because constructing a function using polynomially many operations
that cannot be written as a low-order polynomial plus a term that is nonzero except for a
small fraction of input configurations requires a series of delicate cancellations, it is also ex-
tremely plausible that the fraction of functions that do not satisfy (13) that can be computed
with polynomially bounded resources is extremely small.

To summarize, in this appendix we discuss the restrictions on Boolean functions of N

variables that can be computed with resources that are bounded above by a polynomial
in N . We present arguments to support the conjecture that all functions in P can be written
as the sum of a nongeneric function and a remainder term that is nonzero on a fraction of
input configurations that is bounded above by 2−Ny

for a positive value of y that is bounded
away from zero.

Appendix B: Demonstration that Almost All Boolean Functions Differ
from Functions that Can Be Computed with Polynomially Bounded Resources
on a Substantial Fraction of All Input Configurations

In this appendix it is shown almost all Boolean functions are far from every function that can
be computed with polynomially bounded resources. This is done by bounding from above
the number of Boolean functions that differ from a function that can be computed with
polynomially bounded resources on a fraction ε of the input configurations, and showing
that when ε is small, it is much less than the number of Boolean functions of N variables.

The number of functions that differ from all functions that can be computed with poly-
nomially bounded resources on a fraction ε of the input configurations is bounded above by
the product of an upper bound to the number of functions that can be computed with poly-
nomially bounded resources and an upper bound to the number of functions whose output

Using the Renormalization Group to Classify Boolean Functions 1083

differs from that of a given Boolean function on a fraction ε of the input configurations. The
number of functions that can be computed with polynomially bounded resources, NP , is
bounded above by NP < P1(N)P2(N), where P1(N) and P2(N) are polynomials in N [41].
This follows by considering a Boolean circuit of AND and OR gates, and noting that the
input to each of the polynomially many gates can be either a constant or the output of one
of the other gates. This upper bound can also be written NP < 2P ′(N).

The number of Boolean functions of N variables that differ from a reference function on
a fraction of input configurations that is less than ε, NN(ε), is

NN(ε) =
j=Ωε∑

j=0

(
Ω

j

)
, (24)

where Ω = 2N is the number of different input configurations and
(
Ω

j

)
is the number of ways

to choose j items out of Ω possibilities. We have, when ε < 1/2,

NN(ε) =
Ωε∑

j=1

Ω!
j !(Ω − j)!

≤ (Ωε)
Ω!

(Ωε)!(Ω − Ωε)! . (25)

When 1 � Ωε � Ω , we have

NN(ε) ∼ (Ωε)

(
Ωe

Ωε

)Ωε

= (Ωε)(e/ε)εΩ

= 22N ε log2(e/ε). (26)

Thus we have that the fraction of Boolean functions that differ from a function that can
be computed with polynomially bounded resources on a fraction of the input configurations
that is no greater than ε is

2P ′(N)22N ε log2(e/ε)

22N
= 2P ′(N)2−2N (1−ε log2(e/ε)), (27)

which vanishes extremely quickly as N → ∞ when ε � 1.
An analogous argument demonstrates that a negligible fraction of Boolean functions dif-

fer from polynomials of order ξ with ξ � N on a small fraction of input configurations.
All polynomials of degree ξ or less can be written as a sum over all terms that are products
of the form xi1 · · ·xij with j ≤ ξ . There are

∑ξ

j=1 N !/[j !(N − j)!] such terms, and each
coefficient can be either 1 or 0. Thus, when 1 � ξ � N , the total number of polynomials
of degree up to ξ is bounded above by ξ(Ne/ξ)ξ , and the fraction of Boolean functions that
differ from a polynomial of degree ξ or less on a fraction of the input configurations that is
no greater than epsilon is bounded above by

(
2e(N/ξ)ξ

)(
2−2N (1−ε log2(e/ε))

)
, (28)

which tends to zero as a double exponential of N as N → ∞ for any ε � 1.

1084 S.N. Coppersmith

A second non-rigorous but informative argument to see that almost all Boolean func-
tions do not satisfy (13) is to consider a generic Boolean function in which each coefficient
Ai1,...,iN is chosen independently and randomly to be 1 or 0 with equal probability. For such
a function, one can always find a configuration satisfying (13) by changing just about 2N/2
of the output values so that the function has the same value for all inputs. The question is
whether one can obtain gxi1 ,...,xiM

(x′) = 0 for all choices of the M decimated variables by
changing the function for many fewer configurations than that. For a given g in which M

variables have been decimated, one can find a configuration satisfying gxi1 ,...,xiM
(x′) = 0 for

the 2N−M different possible x′ by changing the output for just about 2N−M−1 different input
configurations. But one must arrange for gxj1 ,...,xjM

(x′) to vanish for all possible choices of

the M variables to be decimated. So the outputs for 2N−M−1 input configurations need to
be changed for each of the N !/[M!(N − M)!] different ways to choose the decimated vari-
ables. Assuming M � N , this yields a naive estimate that one must change the output value
for 2N−M−1+M log2(Ne/M) different input configurations, which exceeds 2N for all M � N .
This argument is useful because it makes it clear why one must examine all choices of the
decimated variables to identify functions that differ from non-generic functions on a small
fraction of input configurations.

References

1. Aaronson, S.: Is P versus NP formally independent? Bull. Eur. Assoc. Theor. Comput. Sci. 81, 109
(2003)

2. Aldana, M., Coppersmith, S., Kadanoff, L.: Boolean dynamics with random couplings. In: Kaplan, E.,
Marsden, J., Sreenivasan, K. (eds.) Perspectives and Problems in Nonlinear Science. Springer Applied
Mathematical Sciences Series. Springer, Berlin (2003)

3. Axelrod, R.: Advancing the art of simulation in the social sciences. In: Conte, R., Hegselmann, R.,
Terna, P. (eds.) Simulating Social Phenomena, pp. 21–40. Springer, Berlin (1997)

4. Bastolla, U., Parisi, G.: Closing probabilities in the Kauffman model: an annealed computation. Phys-
ica D 98, 1–25 (1996)

5. Bastolla, U., Parisi, G.: The modular structure of Kauffman networks. Physica D 115, 203–218, 219–233
(1998)

6. Bastolla, U., Parisi, G.: Relevant elements, magnetization and dynamical properties in Kauffman net-
works: a numerical study. Physica D 115, 203–218 (1998)

7. Bennett, C.: Logical depth and physical complexity. Oxford University Press, London (1988), pp. 227–
257

8. Bennett, C., Gill, J.: Relative to a random oracle A, PA �= NPA �= co-NPA with probability 1. SIAM J.
Comput. 10, 96–113 (1981)

9. Bhatt, R., Lee, P.: Scaling studies of highly disordered spin-1/2 antiferromagnetic systems. Phys. Rev.
Lett. 48, 344–347 (1982)

10. Bhattacharjya, A., Liang, S.: Power-law distributions in some random Boolean networks. Phys. Rev.
Lett. 77, 1644–1647 (1996)

11. Boppana, R., Sipser, M.: The complexity of finite functions. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, pp. 759–804. Elsevier, Amsterdam (1990)

12. Cook, S.: The complexity of theorem proving procedures. In: Third Annual ACM Symposium on the
Theory of Computing, pp. 151–158. Assoc. Comput. Mach., New York (1971)

13. Coppersmith, S.: Complexity of the predecessor problem in Kauffman networks. Phys. Rev. E 75, 51108
(2007)

14. Coppersmith, S., Kadanoff, L.P., Zhang, Z.: Reversible Boolean networks I: Distribution of cycle lengths.
Physica D 149, 11–29 (2001)

15. Derrida, B.: Random-energy model: An exactly solvable model of disordered systems. Phys. Rev. B 24,
2613–2626 (1981)

16. Derrida, B., Flyvbjerg, H.: The random map model: a disordered model with deterministic dynamics.
J. Phys. 48, 971–978 (1987)

17. Derrida, B., Weisbuch, G.: Evolution of overlaps between configuration in random networks. J. Phys.
(Paris) 47, 1297–1303 (1986)

Using the Renormalization Group to Classify Boolean Functions 1085

18. Furst, M., Saxe, J., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory
17, 13–27 (1984)

19. Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group. Perseus, New York
(1992)

20. Goldreich, O.: Candidate one-way functions based on expander graphs (2000). Cryptology ePrint
Archive, Report 200/063, available at http://www.wisdom/weizmann.ac.il/~oded/ow-candid.html

21. Håstad, J.: Almost optimal lower bounds for small depth circuits. In: Proc. 18th ACM Symp. on Theory
of Computing, pp. 6–20 (1986)

22. Hurford, J.: Random Boolean nets and features of language. IEEE Trans. Evol. Comput. 5, 111–116
(2001)

23. Institute, C.M.: Clay Mathematics Institute Millennium Problems. http://www.claymath.org/millenium/
24. Kadanoff, L.: Scaling laws for Ising models near Tc . Physics 2, 263–272 (1966)
25. Kauffman, S.: Homeostasis and differentiation in random genetic control networks. Nature 244, 177–178

(1969)
26. Kauffman, S.: Metabolic stability and epigenesis in random constructed genetic nets. J. Theor. Biol. 22,

437–467 (1969)
27. Kauffman, S.: The large scale structure and dynamics of genetic control circuits: An ensemble approach.

J. Theor. Biol. 44, 167–190 (1974)
28. Kauffman, S.: Emergent properties in random complex automata. Physica D 10, 145–156 (1984)
29. Kauffman, S.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University

Press, London (1993)
30. Kauffman, S.: At Home in the Universe: The Search for Laws of Self-Organization and Complexity.

Oxford University Press, London (1995)
31. Levin, L.: Universal sorting problems. Probl. Pered. Inf. 9, 115–116 (1973) (in Russian). English trans-

lation: Universal search problems, in: Trakhtenbrot, B.A.: A survey of Russian approaches to Perebor
(Brute-Force searches) algorithms. Ann. Hist. Comput. 6(4), 384–400 (1984)

32. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 2nd edn. Springer,
New York (1997)

33. Ma, S.K., Dasgupta, C., Hu, C.K.: Random antiferromagnetic chain. Phys. Rev. Lett. 43, 1434–1437
(1979)

34. Marsaglia, G., Marsaglia, J.: A new derivation of Stirling’s approximation to n!. Am. Math. Mon. 97,
826–829 (1990)

35. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)
36. Qu, X., Aldana, M., Kadanoff, L.: Numerical and theoretical studies of noise effects in the Kauffman

model. J. Stat. Phys. 109, 967–985 (2002)
37. Raz, R.: Lecture notes on arithmetic circuits. http://www.cs.mcgill.ca/~denis/notes05.ps
38. Razborov, A.: Lower bounds on the size of bounded-depth networks over a complete basis with logical

addition. Math. Notes Acad. Sci. USSR 41, 333–338 (1987)
39. Razborov, A., Rudich, S.: Natural proofs. In: Proc. 26th ACM Symp. on Theory of Computing, pp. 204–

213 (1994)
40. Riordan, J., Shannon, C.: The number of two-terminal series-parallel networks. J. Math. Phys. 21, 83–93

(1942)
41. Shannon, C.: The synthesis of two-terminal switching circuits. Bell Syst. Tech. J. 28, 59–98 (1949)
42. Sipser, M.: The history and status of the P versus NP question. In: Proceedings of ACM STOC’92,

pp. 603–618 (1992)
43. Smolensky, R.: Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In:

STOC’87: Proc. of 19th STOC, pp. 77–82 (1987)
44. Smolensky, R.: On representations by low-degree polynomials. IEEE, pp. 130–138 (1993)
45. Socolar, J., Kauffman, S.: Scaling in ordered and critical random Boolean networks. Phys. Rev. Lett. 90,

068702 (2003)
46. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, New York (1999)
47. Wegener, I.: The Complexity of Boolean Functions. Wiley, New York (1987). http://citeseer.ist.psu.edu/

694854.html
48. White, S.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–

2866 (1992)
49. Wigderson, A.: P, NP and mathematics—a computational complexity perspective. In: Proceedings of the

ICM 06 (2006). http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/W06/W06.pdf
50. Wilson, K.: The renormalization group and critical phenomena I: Renormalization group and the

Kadanoff scaling picture. Phys. Rev. B 4, 3174–3183 (1971)
51. Wilson, K.: Problems in physics with many scales of length. Sci. Am. 241, 158–179 (1979)
52. Yao, A.: Separating the polynomial-time hierarchy by oracles. In: Proc. 26th IEEE Symposium on Foun-

dations of Computer Science, pp. 1–10 (1985)

	Using the Renormalization Group to Classify Boolean Functions
	Abstract
	Introduction
	Renormalization Group Transformation
	Generic Phase
	Non-generic Functions

	Renormalization Group Flows within the Generic Phase
	Relationships between the Phase of a Function and the Computational Resources Needed to Compute the Function
	Application of RG to the Kauffman Net Predecessor Problem
	Discussion
	Conclusions
	Acknowledgements
	Appendix A: Characterization of the Functions that Can Be Constructed with a Polynomially Large Number of Operations
	Appendix B: Demonstration that Almost All Boolean Functions Differ from Functions that Can Be Computed with Polynomially Bounded Resources on a Substantial Fraction of All Input Configurations
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

